Robust C–C bonded porous networks with chemically designed functionalities for improved CO2 capture from flue gas

D. Thirion, J. S. Lee, E. OzdemirC. T. Yavuz*
Beilstein J. Org. Chem., 12, 2274-2279, (2016). OpenAccess
Invited Paper for the thematic issue on "Organic Porous Materials". DOI: 10.3762/bjoc.12.220.

Effective carbon dioxide (CO2) capture requires solid, porous sorbents with chemically and thermally stable frameworks. Herein, we report two new carbon–carbon bonded porous networks that were synthesized through metal-free Knoevenagel nitrile–aldol condensation, namely the covalent organic polymer, COP-156 and 157. COP-156, due to high specific surface area (650 m2/g) and easily interchangeable nitrile groups, was modified post-synthetically into free amine- or amidoxime-containing networks. The modified COP-156-amine showed fast and increased CO2 uptake under simulated moist flue gas conditions compared to the starting network and usual industrial CO2 solvents, reaching up to 7.8 wt % uptake at 40 °C.

Keywords: C–C bond; CO2 capture; microporous materials; porous polymers; postmodification
Copyright © . ONE Lab - Prof. Cafer T. Yavuz - Posts · Comments
Theme Template by BTDesigner · Powered by Blogger