Fluorinated covalent organic polymers for high performance sulfur cathodes in lithium–sulfur batteries

H. Shin§, D. Kim§, H. J. Kim§, J. Kim, K. Char*, C. T. Yavuz*, J. W. Choi*
Chem. Mater., accepted (2019). §: Equal contribution
DOI: 10.1021/acs.chemmater.9b01986

Lithium–sulfur (Li–S) batteries by far offer higher theoretical energy density than that of the commercial lithium-ion battery counterparts, but suffer predominantly from an irreversible shuttling process involving lithium polysulfides. Here, we report a fluorinated covalent organic polymer (F-COP) as a template for high performance sulfur cathodes in Li–S batteries. The fluorination allowed facile covalent attachment of sulfur to a porous polymer framework via nucleophilic aromatic substitution reaction (SNAr), leading to high sulfur content, e.g., over 70 wt %. The F-COP framework was microporous with 72% of pores within three well-defined pore sizes, viz. 0.58, 1.19, and 1.68 nm, which effectively suppressed polysulfide dissolution via steric and electrostatic hindrance. As a result of the structural features of the F-COP, the resulting sulfur electrode exhibited high electrochemical performance of 1287.7 mAh g–1 at 0.05C, 96.4% initial Columbic efficiency, 70.3% capacity retention after 1000 cycles at 0.5C, and robust operation for a sulfur loading of up to 4.1 mgsulfur cm–2. Our findings suggest the F-COP family with the adaptability of SNAr chemistry and well-defined microporous structures as useful frameworks for highly sustainable sulfur electrodes in Li–S batteries.
Copyright © . ONE Lab - Prof. Cafer T. Yavuz - Posts · Comments
Theme Template by BTDesigner · Powered by Blogger